ио！！民｜nБә» едәрән рие әұеця Kq łəs s！！um！I u！qu！

 － s！əp！uon｜コ－$-V$ ¿әр！uony и！̣циоо дәұем ino səog－0
s．nnoy X！s ueपł əıou גOł səd！d əપł u！bu －puełs uәəq sey l！！！（spuooəs 09 oł 0ε łnoqe）ploo s！
 әz！

Kileanıeu e si siul
 дәңем ıno u！лоро pue
 рәңеәл ұечł шооІव әебןе
 yoorg peorg ano 600Z to

səau！${ }^{\text {adịd }}$
puno＾бıәрии 〕о чиомңә ไse＾е чбподчł səssəu snq pue səmoч K！！ol
 S！dәңем дә䒑⿰丬＇p｜ə！

 дәңем $\operatorname{dnot~s,~иәриәю~!o~}$
 －sə әу шон дәјем •ㄴ！ －

＇słuәшәд！̣！

 дәңемриполб х！s pue
 －цдои әчł и！ліоләรәу рхеq૧пн－Кәрред әપł ‘әu！！

 ¿шоц әшоэ ләңем Кш sәор әәәчМ－О

suol！səno

ләдем 6u！уи！да ıno人 sıәмsu＊ uо！s！＾！口 дәృем иәр！ґәW

Together We Can Safeguard Our Water Supply

The Water Division is constantly checking water quality
Through the federal Safe Drinking Water Act （SDWA），the U．S．Environmental Protection Agency （U．S．EPA）sets national limits for hundreds of sub－ stances in drinking water and also specifies various treatments that water systems must use to remove those substances．The Meriden Water Division those substances．The Meriden Water Division
continually monitors for these substances，using sophisticated equipment and advanced procedures．
The public has a part to play too The SDWA requires that we provide you with detailed information on water quality each year．We are happy to do this，because customers who are informed are our best allies in supporting improve－ ments necessary for the long－term health of our water system．And remember－our City Council meetings are open to the public．You are always welcome to attend and to voice your views on our drinking water．For information on meeting times drinking water．For information on meeting times
and location，please contact the City Clerk at（203） and location，please contact the City Clerk at（203） 630－4030．For more information about contaminants
and potential health effects，call the U．S．EPA＇s Safe Drinking Water Hotline at 800－426－4791．

Water Conservation Tips

Conservation is an important first step in preserving our water supply．Using these measures can also save you money by reducing your water and sewer bills．Here are a few suggestions
Conservation measures you can use inside your home：
－Fix leaking faucets，pipes，and toilets．
－Install water－saving devices in faucets，toilets and ap－ pliances．
－Replace high－water－use fixtures．
－Wash only full loads of laundry．
－Do not use the toilet for trash disposal．
－Take shorter showers．
－Do not let the water run while shaving or brushing teeth．
－Run the dishwasher only when full．
You can conserve outdoors as well：
－Water the lawn and garden in the early morning or evening．
－Use mulch around plants and shrubs．
－Repair leaks in faucets and hoses．
－Use water－saving nozzles and sprinkler heads．
－Use water from a bucket to wash your car and save the hose for rinsing．

What's In My Water? - Meriden Water-Quality Analysis

Contaminant	Date Tested	Units	MCL	MCLG	Maximum Detected Level	Range Detected	Major Sources	Violation
Inorganic Contaminants								
Copper	009	mg/	AL=1.3	1.3	0.717	<0.001-0.717	Corrosion of household plumbing systems; erosion of natural deposits	No
Fluoride	2009	mg/	4.0	4.0	1.66	0.12-1.66	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories	No
Nitrate	2009	mg/1	10	10	3.6	<0.05-3.6	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	No
Barium	2009	mg/l	2	2	0.234	$0.005-0.234$	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	No
Chlorine	2009	mg/	4	4	2.0	0.10-2.0	Water additive used to control microbes	No
Sodium	2009	mg/1	AL $=28{ }^{\text {(1) }}$	NR	113	17.3-113	Stormwater runoff containing road salt	No ${ }^{(1)}$
Lead	2009	mg/ 1	AL $=0.015$	0	0.001	<0.001-0.001	Corrosion of household plumbing systems; erosion of natural deposits	No
Iron	2009	mg/1	NR	$0.3{ }^{(2)}$	0.049	ND -0.049	Naturally occurring	No
Manganese	2009	mg/	NR	$0^{0.055^{(2)}}$	0.048	ND -0.048	Naturally occurring	No
Sulfate	2009	mg/l	NR	$250{ }^{(2)}$	42	6.1-42	Naturally occurring	No
Chloride	2009	mg/1	NR	$250{ }^{(2)}$	230	<3.0-230	Water additive used to control microbes	No
Asbestos	$2000{ }^{(3)}$	mfl	7	7	0.53	ND - 0.53	Decay of asbestos cement in water mains; erosion of natural deposits	No
Radioactive Contaminants								
Uranium	2008	pci/l	30	0	1.0	<0.67-1.0	Erosion of natural deposits	No
Microorganisms								
Turbidity (point of	2009	NTU	$1^{(4)}$	NR	0.45	0.04-0.45	Soil Runoff	No
		$\begin{aligned} & \%>0.3 \\ & \text { NTU } \end{aligned}$	5\% ${ }^{(4)}$	NR	3.3\%	0-3.3\%		
Total Coliforms	2009	\%	5\%	0	1.4\%	0-1.4\%	Bacteria naturally present in the environment	
Heterotropic Plate Count	2009	cfiuml	$500\left(\right.$ T $^{(5)}$)	NR	60	0-60	Bacteria naturally present in the environment	No
Volatile Organic Contaminants								
Total TTHM	2009	ug/	$80^{(6)}$	NR	29	26-29	Byproduct of drinking water disinfection	No
Total HAA5	2009	ug/1	$60^{(6)}$	NR	23	17-23	Byproduct of drinking water disinfection	No
Tetrachloroethylene	2009	ug/	5	0	1.9	<0.5-1.9	Discharge from factorics and dry cleaners	No
Dibromochloromethane	2009	ug/1	NR	60	5.3	$<0.5-5.3$	Byproduct of drinking water disinfection	No
Bromodichloromethane	2009	ug/1	NR	0	16	$<0.5-16$	Byproduct of drinking water disinfection	No
Bromoform	2009	ug/	NR	0	0.78	<0.5-0.78	Byproduct of drinking water disinfection	No
Chloroform	2009	ug/1	NR	70	96	<0.5-96	Byproduct of drinking water disinfection	No
Dichloroactic acid	2009	ug/	NR	0	24	<1.0-24	Byproduct of drinking water disinfection	No
Trichloroacetic acid	2009	ug/1	NR	20	44	<1.0-44	Byproduct of drinking water disinfection	No
Dibromoacetic acid	2009	ug/1	NR	NR	3.5	<1.0-3.5	Byproduct of drinking water disinfection	No
Herbicides and Pesticides								
$\begin{aligned} & \text { 1,2-Dibromo-3- } \\ & \text { chloropropane (DBCP) } \end{aligned}$	2009	ug/1	0.2	0	0.04	$<0.02-0.04$	Runofflcaching from soil fumigant	No
1, 2-Dibromoethane (EDB)	2009	ug/1	0.05	0	0.03	$<0.02-0.03$	Discharge from petroleum refineries	No

We are pleased to report that during the past year, the water delivered to your home or business complied with, or did better than, all state and federal drinking water requirements. Each year we analyze thousands of water samples for bacteria, turbidity, inorganic contaminants, lead and coppe nitrate volatile organic contaminants, total trihalomethanes, and synthetic organic contaminants For your information, we have listed in the table on the left the substances that were detected in our drinking water during the year Although all of the drinking wa lis ubl Lel (MCL) set U.S. EPA, we bele lami nant Level (MCL) set by U.S. EPA, we believe it is important that you know exactly what was detected and how much of the substance was present in the water.
$\frac{\text { Notes: }}{\text { (1) Alth }}$
(1) Although sodium does not have a MCL, the State requires that the water supplier provide notification to customers of levels exceeding 28.0 ppm . Therefore, if levels of sodium were recorded from a supply source in your area you were previous provided notification of the event. Elevated levels of sodium
encountered are believed to be caused by road salt. (2) The EPA has established these National Second (2) The EPA has established these National Secondary Drinking
Water Regulations (NSDWRs) for contaminants that may cause cosmetic or aesthetic effects in drinking water. These standards are recommendations, not requirements, but the City of Meriden strives to comply with them.
(3) Asbestos is not tested for every year; the most recent results available are given.
(4) Turbidity: As of J
1 NTU, and must not any month.
(5) EPA's surface water treatment rules require systems using surface water or ground water under the direct influence of surface water to (1) disinfect their water and (2) filter their water
or meet criteria for avoiding filtration so that the following conor meet criteria for avoiding filtration so that the following contaminants are controled at the foliowing
than 500 bacterial colonies per milliliter.
(6) As of January 1,2002 , these standards refer to running annual averages. Data from the last three quarters of 2008 is included in figuring these averages.

Key To Table
AL = Action Level
MCL $=$ Maximum Contaminant Level
MCLG = Maximum Contaminant Level Goa NTU $=$ Nephelometric Turbidity Units
$\mathrm{ND}=$ non-detectable
$\mathrm{NR}=$ Not Regulated
$\mathrm{mg} / \mathrm{I}=$ milligrams per lite
ug/l = micrograms per lite
pcill = Picocuries per liter
$\mathrm{mfl}=$ Million fibers per lite
$\mathrm{n} / \mathrm{a}=$ not applicable
HAA $=$ fotive haloacetic acids

Understanding Contaminants

T.
o ensure that tap water is safe to drink, U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water sys tems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of som contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of both tap and bottled drinking water include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water from these sources travels over the surface of the land or through the ground, it can acquire naturally occurring minerals (which in some cases could be radioactive) and substances resulting from the presence of animals or from a wide variety of human and industrial activities. Substances that may be present in source water include:

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from such things as urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, or mining. This category of contaminants also includes the pesticides and herbicides used primarily in agriculture

Radioactive Contaminants, which can be naturally occuring or may be the result of oil and gas production and mining activities.
Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations or wildlife
Volatile Organic (and Synthetic) Contaminants, which are typically by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, and septic systems.

As the table above demonstrates, the Meriden Water Division removes these contaminants prior to distribution. Meriden water meets or surpasses all state and federal drinking water requirements.

Regulated Contaminants

Meriden Water Division tests for a large number of contaminants, though only detected contaminants are noted. Every regulated contaminant that we detected in the water is listed in the water-quality table above. In 2009, the Meriden Water Division's drinking water met or surpassed all federal and state drinking water standards.

Unregulated Contaminants

Meriden Water Division tested for Cryptosporidium in 2009 and the results are available as required

The Meriden Water Division also utilizes a phosphate based corrosion inhibitor as part of a lead and copper control program. The Division regularly monitors ortho phosphate total levels; during 2009, levels ranged from $0.35 \mathrm{mg} / \mathrm{l}$ to $1.67 \mathrm{mg} / \mathrm{l}$.

Health Matters

T
presence of contaminants in drinking water does not necessarily indicate that the water poses a potential health threat.

A few contaminants, like copper, are in fact essential nutrients at appropriate, very low concentrations. However some people who drink water that contains copper in excess of the EPA's Action Level could experience gastroin testinal distress over a relatively short period of time. Over many years, ingesting water that contains copper in excess of the Action Level could lead to liver or kidney damage. People with Wilson's disease should consult their personal doctor about their water consumption

Lead is also a concern. Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink water containing lead in excess of the action level over many years could develop kidney problems or high blood pressure.

Some people may be more vulnerable to contaminants in drinking water than is the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

Source Water Assessment

SSource Water Assessment Reports were completed by the Department of Public Health, Drinking Water Division for the Meriden Water Division The assessment report can be found on the DPH's website: http://www.dir.ct.gov/dph/Water/SWAP/community/CT0800011.pdf. The assessment found that the public drinking water sources have susceptibility to potential sources of contamination, low for the reservoir sources, and ranging from moderate to high for the groundwater sources.

